Conclusion and References
Technological evolution in clinical laboratory diagnostics has advanced considerably by allowing for the direct molecular detection of a pathogen in a clinical specimen rather than relying on isolation and cultivation. This approach has decreased the time required to identify a pathogen because the laboratory is no longer limited by the growth kinetics of the organism. Therefore, patients can be evaluated and if infected can be treated promptly, thereby diminishing progression to disease and disrupting transmission. As with all changes in laboratory technology, a synthesis of scientific evidence is required for an informed decision regarding the implementation of a new or improved test platform. Previous CDC recommendations to use NAATs for the detection of chlamydia and gonorrhea as the standard laboratory test remain. These updated CDC recommendations now specify that vaginal swabs are the preferred specimen for screening women and include the use of rectal and oropharyngeal specimens among populations at risk for extragenital tract infections. FDA clearance is important for widespread use of a test, and it is important that clearance be obtained for NAAT use with rectal and oropharyngeal specimens, and with vaginal swabs collected in other than clinic settings.
Future revisions to these recommendations will be influenced by the development and marketing of new laboratory tests, or indications of existing tests, for chlamydia and gonorrhea.Improvements in molecular tests that continue to decrease detection time and decrease the test complexity might facilitate the use of NAATs in non-traditional laboratory settings such as physician offices, health fairs, school clinics, or other outreach venues. Shifting chlamydia and gonorrhea diagnostics from laboratories might require new recommendations on test application or reporting positive cases of reportable diseases. Periodic updates to these recommendations will be available on the CDC Division of STD Prevention website (https://www.cdc.gov/std).
References
1. CDC. Sexually transmitted disease surveillance, 2010. Atlanta, GA: US Department of Health and Human Services, CDC; 2011.
2. Stamm WE. Chlamydia trachomatis infections of the adult. In: Holmes KK, Sparling FF, Stamm WE., et al., eds. Sexually transmitted diseases. 4th ed. New York, NY: McGraw-Hill Companies, Inc.; 2007:575–94.
3. Owusu-Edusei K, Chesson HW, Gift TL, et al. The estimated direct medical cost of selected sexually transmitted infections in the United States, 2008. Sex Transm Dis 2013;40:197–201.
4. Hoover KW, Tao G, Kent CK. Trends in the diagnosis and treatment of ectopic pregnancy in the United States. Obstet Gynecol 2010;115:495–502.
5. Blandford JM, Gift TL. Productivity losses attributable to untreated chlamydial infection and associated pelvic inflammatory disease in reproductive-aged women. Sex Transm Dis 2006;33(Suppl):S117–21.
6. Stamm WE, Guinan ME, Johnson C, Starcher T, Holmes KK, McCormack WM. Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis. N Engl J Med 1984;310:545–9.
7. Rees E. Treatment of pelvic inflammatory disease. Am J Obstet Gynecol 1980;138:1042–7.
8. Westrom L, Joesoef R, Reynolds G, Hadgu A, Thompson SE. Pelvic inflammatory disease and fertility: a cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopy results. Sex Transm Dis 1992;19:185–92.
9. Chow JM, Yonekura L, Richwald GA, Greenland S, Sweet RL, Schachter J. The association between Chlamydia trachomatis and ectopic pregnancy: a matched-pair, case-control study. JAMA 1990;263:3164–7.
10. Miettinen A, Heinonen PK, Teisala K, Hakkarainen K, Punnonen R. Serologic evidence for the role of Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycoplasma hominis in the etiology of tubal factor infertility and ectopic pregnancy. Sex Transm Dis 1990;17:10–4.
11. US Preventive Services Task Force. Screening for chlamydial infection: recommendation statement. Ann Intern Med 2007;147:128–34.
12. CDC. Male chlamydia screening consultation, Atlanta, Georgia, March 28–29, 2006. Meeting Report, May 22, 2007. Atlanta, GA: US Department of Health and Human Services, CDC; 2007. Available at https://www.cdc.gov/std/chlamydia/ChlamydiaScreening-males.pdf.
13. Boisvert J-F, Koutsky LA, Suchland RJ, Stamm WE. Clinical features of Chlamydia trachomatis rectal infection by serovar among homosexually active men. Sex Transm Dis 1999;26:392–8.
14. Quinn TC, Goodell SE, Mkrtichian PA-C, et al. Chlamydia trachomatis proctitis. N Engl J Med 1981;305:195–200.
15. Jones BR, Al-Hussaini MK, Dunlop EM. Infection of the eye and the genital tract by the TRIC agent. Br J Vener Dis 1964;40:19–24.
16. Carter JD, Hudson AP. The evolving story of Chlamydia-induced reactive arthritis. Curr Opin Rheumatol 2010;22:424–30.
17. Hook EW III, Handsfielsd HH. Gonoccocal infections in the adult. In: Holmes KK, Sparling FF, Stamm WE, et al., eds. Sexually transmitted diseases. 4th ed. New York, NY: McGraw-Hill Companies, Inc.; 2007:627–45.
18. CDC. HIV prevention through early detection and treatment of other sexually transmitted diseases—United States: recommendations of the Advisory Committee for HIV and STD Prevention. MMWR 1998;47(No. RR-12).
19. CDC. Sexually transmitted diseases treatment guidelines, 2010. MMWR 2010;59(No. RR-12).
20. CDC. Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections—2002. MMWR 2002;51(No. RR-15).
21. Gaydos CA, Quinn TC, Willis D, et al. Performance of the APTIMA Combo 2 assay for the multiplex detection of Chlamydia trachomatis and Neisseria gonorrhoeae in female urine and endocervical swab specimens. J Clin Microbiol 2003;41:304–9.
22. Van Der Pol B, Ferrero DV, Buck‐Barrington L, et al. Multicenter evaluation of the BDProbeTec ET system for the detection of Chalmydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol 2001;39:1008–16.
23. Martin DH, Cammarata C, Van Der Pol B, et al. Multicenter evaluation of AMPLICOR and automated COBAS AMPLICOR CT/NG tests for Neisseria gonorrhoeae. J Clin Microbiol 2000;38:3544–9.
24. Van Der Pol B, Quinn TC, Gaydos CA, et al. Multi‐center evaluation of the AMPLICOR and automated COBAS AMPLICOR CT/NG Tests for the detection of Chlamydia trachomatis. J Clin Microbiol 2000;38:1105–12.
25. Alary M, Gbenafa-Agossa C, Aïna G, et al. Evaluation of a rapid point of care test for the detection of gonococcal infection among female sex workers in Benin. Sex Transm Infect 2006;82:29–32.
26. Lee HH, Chernesky MA, Schachter J, et al. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 1995;345:213–6.
27. Jaschek G, Gaydos CA, Welsh L, Quinn TC. Direct detection of Chlamydia trachomatis in urine specimens from symptomatic and symptomatic men by using a rapid polymerase chain reaction assay. J Clin Microbiol 1993;31:1209–12.
28. Black CM, Marrazzo J, Johnson RE, et al. Head-to-head multicenter comparison of DNA probe and nucleic acid amplification tests for Chlamydia trachomatis in women with use of an improved reference standard. J Clin Microbiol 2002;40:3757–63.
29. Marrazzo JM, Johnson RE, Green TA, et al. Impact of patient characteristics on performance of NAATs and DNA probe of Chlamydia trachomatis in women with genital infections. J Clin Microbiol 2005;43:577–84.
30. Gaydos CA, Theodore M, Dalesio N, Wood BJ, Quinn TC. Comparison of three nucleic acid amplification tests for the detection of Chlamydia trachomatis in urine specimens. J Clin Microbiol 2004;42:3041–5.
31. Koumans EH, Johnson RE, Knapp JS, St. Louis ME. Laboratory testing for Neisseria gonorrhoeae by recently introduced nonculture tests: a performance review with clinical and public health considerations. Clin Infect Dis 1998;27:1171–80.
32. Chernesky M, Morse S, Schachter J. Newly available and future laboratory tests for sexually transmitted diseases (STDs) other than HIV. Sex Transm Dis 1999;26(Suppl):S8–11.
33. Chernesky MA. Nucleic acid tests for the diagnosis of sexually transmitted diseases. FEMS Immunol Med Microbiol 1999;24:437–46.
34. Davies PO, Ridgway GL. Role of polymerase chain reaction and ligase chain reaction for the detection of Chlamydia trachomatis. Int J STD AIDS 1997;8:731–8.
35. Domeika M. Diagnosis of infections due to Chlamydia trachomatis. Acta Obstet Gynecol Scand 1997;164(Suppl):121–7.
36. Schachter J. DFA, EIA, PCR, LCR and other technologies: what tests should be used for diagnosis of chlamydia infections? Immunol Invest 1997;26:157–61.
37. Taylor-Robinson D. Evaluation and comparison of tests to diagnose Chlamydia trachomatis genital infections. Hum Reprod 1997;12(Suppl):113–20.
38. Guaschino S, De Seta F. Update on Chlamydia trachomatis [Review]. Ann N Y Acad Sci 2000;900:293–300.
39. Elias J, Frosch M, Vogel U. Neisseria. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH Landry ML, Warnock DW, eds. Manual of clinical microbiology. 10th ed. Washington, DC: American Society of Microbiology; 2011:559–603.
40. Won H, Ramachandran P, Steece R, et al. Is there evidence of the new variant Chlamydia trachomatis in the United States? Sex Transm Dis 2013;40:352–3.
41. Ripa T, Nilsson PA. A Chlamydia trachomatis Strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex Transm Dis 2007;34:255–6.
42. Stamm WE, Tam M, Koester M, Cles L. Detection of Chlamydia trachomatis inclusions in McCoy cell cultures with fluorescein-conjugated monoclonal antibodies. J Clin Microbiol 1983;17:666–8.
43. Yoder BL, Stamm WE, Koester CM, Alexander ER. Microtest procedure for isolation of Chlamydia trachomatis. J Clin Microbiol 1981;13:1036–9.
44. Kuo C-C, Wang S-P, Wentworth BB, Grayston JT. Primary isolation of TRIC organisms in HeLa 229 cells treated with DEAE-dextran. J Infect Dis 1972;125:665–8.
45. Johnston SL. Siegel. Comparison of Buffalo green monkey kidney cells and McCoy cells for the isolation of Chlamydia trachomatis in shell vial centrifugation culture. Diagn Microbiol Infect Dis 1992;15:355–7.
46. Krech T, Bleckmann M, Paatz R. Comparison of buffalo green monkey kidney cells and McCoy cells for the isolation of Chlamydia trachomatis in a microtiter system. J Clin Microbiol 1989;27:2364–5.
47. Ripa KT, Mårdh P-A. Cultivation of Chlamydia trachomatis in cycloheximide-treated McCoy cell. J Clin Microbiol 1977;6:328–31.
48. CDC. False-positive results with the use of chlamydial tests in the evaluation of suspected sexual abuse—Ohio 1990. MMWR 1991;39:932–5.
49. Barnes RC. Laboratory diagnosis of human chlamydial infections. Clin Microbiol Rev 1989;2:119–36.
50. Hammerschlag MR, Ajl S, Laraque D. Inappropriate use of nonculture tests for the detection of Chlamydia trachomatis in suspected victims of child sexual abuse: a continuing problem. Pediatrics 1999;104:1137–9.
51. Pate MS, Hook EW. Laboratory to laboratory variation in Chlamydia trachomatis culture practices. Sex Transm Dis 1995;22:322–6.
52. Watson EJ, Templeton A, Russell I, Paavonen J, et al. The accuracy and efficacy of screening tests for Chlamydia trachomatis: a systematic review. J Med Microbiol 2002;51:1021–31.
53. Drake CJ, Barenfanger J, Lawhorn J, Verhulst S. Comparison of easy-flow Copan liquid Stuart’s and Starplex swab transport systems for recovery of fastidious aerobic bacteria. J Clin Microbiol 2005;43:1301–3.
54. Wade JJ, Graver MA. Six auxotypes of Neisseria gonorrhoeae in transport media. J Clin Microbiol 2003;41:1720–1.
55. Arbique JC, Forward KR, LeBlanc J. Evaluation of four commercial transport media for the survival of Neisseria gonorrhoeae. Diagn Microbiol Infect Dis 2000;36:3596–601.
56. Jephcott AE. Microbiological diagnosis of gonorrhoea. Genitourin Med 1997;73:245–52.
57. Pace PJ, Catlin BW. Characteristics of Neisseria gonorrohoeae strains isolated on selective and nonselective media. Sex Transm Dis 1986;13:29–39.
58. CDC. Cephalosporin-resistant Neisseria gonorrheae public health response plan. Atlanta, GA: US Department of Health and Human Services, CDC; 2012. Available at https://www.cdc.gov/std/treatment/Ceph-R-ResponsePlanJuly30-2012.pdf.
59. Ashford WA, Golash RG, Hemming VG. Penicillinase-producing Neisseria gonorrhoeae. Lancet 1976;7897:657–8.
60. Philips I. Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet 1976;7897:656–7.
61. Morse SA, Johnson SR, Biddle JW, Roberts MC. High-level tetracycline resistance in Neisseria gonorrhoeae is the result of acquisition of streptococcal tetM determinant. Antimicrob Agents Chemother 1986;20:117–21.
62. Knapp JS, Fox KK, Trees DL, Whittington WL. Fluoroquinolone resistance in Neisseria gonorrhoeae. Emerg Infect Dis 1997;3:33–9.
63. Whittington WL, Knapp JS. Trends in antimicrobial resistance in Neisseria gonorrhoeae in the United States. Sex Transm Dis 1988;15:202–10.
64. Ison CA. Antimicrobial agents and gonorrhea: therapeutic choice, resistance and susceptibility testing. Genitourin Med 1996;72:253–7.
65. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis 2005;41:S120–6.
66. Hooper DC. Bacterial topoisomerases, anti-topoisomerases, and antitopoisomerase resistance. Clin Infect Dis 1998;27:S54–63.
67. Newman LM, Moran JS, Workowski KA. Update on the management of gonorrhea in adults in the United States. Clin Infect Dis 2007;44 (Suppl 3):S84–101.
68. Clinical and Laboratory Standards Institute. Analysis and presentation of cumulative antimicrobial susceptibility data; approved Guideline. 3rd ed. CLSI document M39–A3. Wayne, PA: Clinical and Laboratory Standards Institute; 2009.
69. Wang SA, Papp JR, Stamm WE, Peeling RW, Martin DH, Holmes KK. Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report. J Infect Dis 2005;191:917–23.
70. Howell MR, Quinn TC, Gaydos CA. Screening for Chlamydia trachomatis in asymptomatic women attending family planning clinics: A cost effectiveness analysis of three preventive strategies. Ann Intern Med 1998;28:277–84.
71. Howell MR, Quinn TC, Brathwaite W, Gaydos CA. Screening women for Chlamydia trachomatis in family planning clinics: the cost-effectiveness of DNA amplification assays. Sex Transmit Dis 1998;25:108–17.
72. Hu D, Hook EW III, Goldie SJ. Screening for Chlamydia trachomatis in women 15 to 29 years of age: a cost-effectiveness analysis. Ann Intern Med 2004;141:1501–13.
73. Martin DH, Cammarata C, Van der Pol B, et al. Multicenter evaluation of AMPLICOR and automated COBAS AMPLICOR CT/NG tests for Neisseria gonorrhoeae. J Clin Microbiol 2000;38:3544–9.
74. Van der Pol B, Martin DH, Schachter J, et al. Enhancing the specificity of the COBAS AMPLICOR CT/NG test for Neisseria gonorrhoeae by retesting specimens with equivocal results. J Clin Microbiol 2001;39:3092–8.
75. Bachmann LH, Johnson RE, Cheng H, Markowitz LE, Papp JR, Hook EW III. Nucleic acid amplification tests for diagnosis of Neisseria gonorrhoeae oropharyngeal infections. J Clin Microbiol 2009;47:902–7.
76. Bachmann LH, Johnson RE, Cheng H, et al. Nucleic acid amplification tests for diagnosis of Neisseria gonorrhoeae and Chlamydia trachomatis rectal infections. J Clin Microbiol 2010;48:1827–32.
77. Hadgu A, Dendukuri N, Wang L. Evaluation of screening tests for detecting Chlamydia trachomatis. Epidemiology 2012;23:72–82.
78. Miller WC. Reference-test bias in diagnostic-test evaluation. Epidemiology 2012;23:83–5.
79. Scholes D, Stergachis A, Heidrich FE, et al. Prevention of pelvic inflammatory disease by screening for cervical chlamydial infection. N Engl J Med 1996;334:1362–6.
80. Kamwendo F, Forslin L, Bodin L, et al. Decreasing incidences of gonorrhea- and chlamydia-associated acute pelvic inflammatory disease: a 25-year study from an urban area of central Sweden. Sex Transm Dis 1996;23:384–91.
81. US Preventive Services Task Force. Screening for gonorrhea: recommendation statement. Ann Fam Med 2005;3:263–7.
82. Schachter J, Chernesky MA, Willis DE, et al. Vaginal swabs are the specimens of choice when screening for Chlamydia trachomatis and Neisseria gonorrhoeae: results from a multicenter evaluation of the APTIMA assays for both infections. Sex Transm Dis 2005;32:725–8.
83. Masek BJ, Arora N, Quinn N, et al. Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internetbased screening program. J Clin Microbiol 2009;47:1663–7.
84. Shafer M-A, Moncada J, Boyer CB, Betsinger K, Flinn SD, Schachter J. Comparing first‐void urine specimens, self‐collected vaginal swabs, and endocervical specimens to detect Chlamydia trachomatis and Neisseria gonorrhoeae by a nucleic acid amplification test. J Clin Microbiol 2003;41:4395–9.
85. Schachter J, McCormack WM, Chernesky MA, et al. Vaginal swabs are appropriate specimens for diagnosis of genital tract infection with Chlamydia trachomatis. J Clin Microbiol 2003;41:3784–9.
86. Hsieh Y-H, Howell MR, Gaydos JC, McKee KT Jr, Quinn TC, Gaydos CA. Preference among female army recruits for use of self‐administered vaginal swabs or urine to screen for Chlamydia trachomatis genital infections. Sex Transm Dis 2003;30:769–73.
87. Michel CC, Sonnex C, Carne CA, et al. Chlamydia trachomatis load at matched anatomical sites: Implications for screening strategies. J Clin Microbiol 2007;45:1395–402.
88. Knox J, Tabrizi SN, Miller P, et al. Evaluation of self‐collected samples in contrast to practitioner‐collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex Transm Dis 2002;29:647–54.
89. Falk L, Coble BI, Mjörnberg PA, Fredlund H. Sampling for Chlamydia trachomatis infection–a comparison of vaginal, first-catch urine, combined vaginal and first-catch urine and endocervical sampling. Int J STD AIDS 2010;21:283–7.
90. Gaydos CA, Ferrero DV, Papp JR. Laboratory aspects of screening men for Chlamydia trachomatis in the new millennium. Sex Transm Dis 2008;35(Suppl):S44–50.
91. Kent CK, Chaw JK, Wong W, et al. Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003. Clin Infect Dis 2005;41:67–74.
92. CDC. Clinic-based testing for rectal and pharyngeal Neisseria gonorrhoeae and Chlamydia trachomatis infections by community-based organizations— five cities, United States, 2007. MMWR 2009;58:716–9.
93. Manavi K, McMillan A, Young H. The prevalence of rectal chlamydial infection amongst men who have sex with men attending the genitourinary medicine clinic in Edinburgh. Int J STD AIDS 2004;15:162–4.
94. Annan NT, Sullivan AK, Nori A, et al. Rectal chlamydia–a reservoir of undiagnosed infection in men who have sex with men. Sex Transm Infect 2009;85:176–9.
95. Schachter J, Moncada J, Liska S, Shayevich C, Klausner JD. Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with men. Sex Transm Dis 2008;35:637–42.
96. Centers for Medicare and Medicaid Services. 42 C.F.R. Part 493 Laboratory requirements: Clinical Laboratory Improvement Amendments of 1988.
97. Girardet RG, Lahoti S, Howard LA, et al. Epidemiology of sexually transmitted infections in suspected child victims of sexual assault. Pediatrics 2009;124:79–86.
98. Black CM, Driebe EM, Howard LA, et al. Multicenter study of nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in children being evaluated for sexual abuse. Pediatr Infect Dis J 2009;28:608–13.
99. Mabey D, Peeling RW. lymphogranuloma venereum. Sex Transm Infect 2002;78:90–2.
100. Alexander S, Martin IMC, Ison C. A comparison of two methods for the diagnosis of lymphogranuloma venereum. J Med Microbiol 2008;57:962–5.
101. Chen CY, Chi KH, Alexander S, et al. The molecular diagnosis of lymphogranuloma venereum: evaluation of a real-time multiplex polymerase chain reaction test using rectal and urethral specimens. Sex Transm Dis 2007;34:451–5.
102. Morré SA, Spaargaren J, Fennema JSA, de Vries HJC, Coutinho RA, Peña AS. Real-time polymerase chain reaction to diagnose lymphogranuloma venereum. Emerg Infect Dis 2005;11:1311.
103. Spaargaren J, Fennema HS, Morre SA, de Vries HJ, Coutinho RA. New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. Emerg Infect Dis 2005;11:1090–2.
104. Halse TA. Musser KA, Limberge RJ. A multiplexed real-time PCR assay for rapid detection of Chlamydia trachomatis and identification of serovar L-2, the major cause of lymphogranuloma venereum in New York. Mol Cell Probes 2006;20:290–7.
105. Schachter J, Hook EW, Martin DH, et al. Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: all NAATs are not created equal. J Clin Microbiol 2005;43:1372–3.
106. Schachter J, Chow JM, Howard H, Bolan G, Moncada J. Detection of Chlamydia trachomatis by nucleic acid amplification testing: our evaluation suggests that CDC-recommended approaches for confirmatory testing are ill-advised. J Clin Microbiol 2006;44:2512–7.
107. Moncada J, Donegan E, Schachter J. Evaluation of CDC-recommended approaches for confirmatory testing of Neisseria gonorrhoeae nucleic acid amplification results. J Clin Microbiol 2008;46:1614–9.
108. Gaydos CA, Crotchfelt KA, Howell MR, Kralian S, Hauptman P, Quinn TC. Molecular amplification assays to detect chlamydial infections in urine specimens from high school female students and to monitor the persistance of chlamydial DNA after therapy. J Infect Dis 1998;177:417–24.
109. Workowski KA, Lampe MF, Wong KG, Watts MB, Stamm WE. Longterm eradication of Chlamydia trachomatis genital infection after antimicrobial therapy. JAMA 1993;270:2071–5.
110. Bachmann LH, Desmond RA, Stephens J, Hughes A, Hook EW III. Duration of persistence of gonococcal DNA detected by ligase chain reaction in men and women following recommended therapy for uncomplicated gonorrhea. J Clin Microbiol 2002;40:3596–601.
111. Kacena KA, Quinn SB, Howell MR, Madico GE, Quinn TC, Gaydos CA. Pooling urine samples for ligase chain reaction screening for genital Chlamydia trachomatis infection in asymptomatic women. J Clin Microbiol 1998;36:481–5.
112. Lindan C, Mathur M, Jerajani H, et al. Utility of Pooled Urine Specimens for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Men Attending Public Sexually Transmitted Infection Clinics in Mumbai, India, by PCR. J Clin Microbiol 2005;43:1674–7.
113. Currie MJ, McNiven M, Yee T, Schiemer U, Bowden FJ. Pooling of Clinical Specimens Prior to Testing for Chlamydia trachomatis by PCR Is Accurate and Cost Saving. J Clin Microbiol 2004;42:4866–7.
114. Zubrzycki L. Non-culture tests for the diagnosis of gonorrhea [Review]. Adv Exp Med Biol 1990;263:77–88.
115. Janik A, Juni E, Heym GA. Genetic transformation as a tool for detection of Neisseria gonorrhoeae. J Clin Microbiol 1976;4:71–81.
116. Jaffe HW, Kraus SJ, Edwards TA, Weinberger SS, Zubrzycki L. Diagnosis of gonorrhea using a genetic transformation test on mailed clinical specimens. J Infect Dis 1982;146:275–9.
117. Butler LO, Knight RDJ. Laboratory diagnosis of gonococcal infection by genetic transformation. J Clin Microbiol 1982;15:810–4.
118. Zubrzycki L, Weinberger SS. Laboratory diagnosis of gonorrhoea by a simple transformation test with a temperature-sensitive mutant of Neisseria gonorrhoeae. Sex Transm Dis 1980;7:183–7